List of publications

2024

  1. Del Pia, A., Knop, D., Lassota, A., Sornat, K., & Talmon, N. (2024). Aggregation of Continuous Preferences in One Dimension. Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24.
  2. Deligkas, A., Eiben, E., Knop, D., & Schierreich, Š. (2024). Individual-Rationality in Topological Distance Games is Surprisingly Hard. Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24.
  3. Boehmer, N., Faliszewski, P., Janeczko, Ł., Peters, D., Pierczyński, G., Schierreich, Š., Skowron, P., & Szufa, S. (2024). Evaluation of Project Performance in Participatory Budgeting. Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24.
  4. Jelínek, V., Opler, M., & Valtr, P. (2024). Generalized Coloring of Permutations. Algorithmica. doi: 10.1007/s00453-024-01220-9
  5. Červený, R., Choudhary, P., & Suchý, O. (2024). On Kernels for d-Path Vertex Cover. Journal of Computer and System Sciences, 144, 103531. doi: 10.1016/j.jcss.2024.103531
  6. Chen, J., Molter, H., Sorge, M., & Suchý, O. (2024). Cluster Editing for Multi-Layer and Temporal Graphs. Theory of Computing Systems, Commemorative Issue for Gerhard Woeginger, to appear.
  7. Berendsohn, B. A., Kozma, L., & Opler, M. (2024). Optimization with pattern-avoiding input. In R. O’Donnell (Ed.), Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC ’24. ACM.
  8. Schierreich, Š., & Smutný, J. G. (2024). The Parameterized Complexity of Maximum Betweenness Centrality. In X. Chen & B. Li (Eds.), Proceedings of the 18th Annual Conference on Theory and Applications of Models of Computation, TAMC ’24 (Vol. 14637). Springer.
  9. Fioravantes, F., Knop, D., Křišťan, J. M., Melissinos, N., & Opler, M. (2024). Exact Algorithms and Lowerbounds for Multiagent Path Finding: Power of Treelike Topology. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence, AAAI ’24: Vol. 38, part 16 (pp. 17380–17388). AAAI Press. doi: 10.1609/aaai.v38i16.29686
  10. Deligkas, A., Eiben, E., Korchemna, V., & Schierreich, Š. (2024). The Complexity of Fair Division of Indivisible Items with Externalities. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence, AAAI ’24: Vol. 38, part 9 (pp. 9653–9661). AAAI Press. doi: 10.1609/aaai.v38i9.28822
  11. Jelínek, V., Opler, M., & Pekárek, J. (2024). The Hierarchy of Hereditary Sorting Operators. In D. P. Woodruff (Ed.), Proceedings of the 35th ACM-SIAM Symposium on Discrete Algorithms, SODA ’24 (pp. 1447–1464). SIAM. doi: 10.1137/1.9781611977912.59

2023

  1. Hančl, J., Kabela, A., Opler, M., Sosnovec, J., Šámal, R., & Valtr, P. (2023). Improved Bounds for the Binary Paint Shop Problem. In W. Wu & G. Tong (Eds.), Proceedings of the 29th International Computing and Combinatorics Conference, COCOON ’23 (Vol. 14423, pp. 210–221). Springer. doi: 10.1007/978-3-031-49193-1_16
  2. Blažej, V., Dvořák, P., & Opler, M. (2023). Bears with Hats and Independence Polynomials. Discrete Mathematics & Theoretical Computer Science, 25(2). doi: 10.46298/dmtcs.10802
  3. Ganian, R., Hamm, T., Knop, D., Schierreich, Š., & Suchý, O. (2023). Hedonic Diversity Games: A Complexity Picture with More than Two Colors. Artificial Intelligence, 325, 1–20. doi: 10.1016/j.artint.2023.104017
  4. Bodlaender, H. L., Bonnet, É., Jaffke, L., Knop, D., Lima, P. T., Milanič, M., Ordyniak, S., Pandey, S., & Suchý, O. (2023). Treewidth is NP-Complete on Cubic Graphs. In N. Misra & M. Wahlström (Eds.), Proceedings of the 18th International Symposium on Parameterized and Exact Computation, IPEC ’23 (Vol. 285, pp. 7:1–7:13). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2023.7
  5. Gima, T., Kim, E. J., Köhler, N., Melissinos, N., & Vasilakis, M. (2023). Bandwidth Parameterized by Cluster Vertex Deletion Number. In N. Misra & M. Wahlström (Eds.), Proceedings of the 18th International Symposium on Parameterized and Exact Computation, IPEC ’23 (Vol. 285, pp. 21:1–21:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2023.21
  6. Dissaux, T., Fioravantes, F., Gahlawat, H., & Nisse, N. (2023). Recontamination helps a lot to hunt a rabbit. In J. Leroux, S. Lombardy, & D. Peleg (Eds.), Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science, MFCS ’23 (Vol. 272, pp. 42:1–42:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2023.42
  7. Lampis, M., Melissinos, N., & Vasilakis, M. (2023). Parameterized Max Min Feedback Vertex Set. In J. Leroux, S. Lombardy, & D. Peleg (Eds.), Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science, MFCS ’23 (Vol. 272, pp. 62:1–62:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2023.62
  8. Křišťan, J. M., & Svoboda, J. (2023). Shortest Dominating Set Reconfiguration under Token Sliding. In H. Fernau & K. Jansen (Eds.), Proceedings of the 24th International Symposium on Fundamentals of Computation Theory, FCT ’23 (Vol. 14292, pp. 333–347). Springer. doi: 10.1007/978-3-031-43587-4_24
  9. Bredereck, R., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2023). High-Multiplicity Fair Allocation Using Parametric Integer Linear Programming. In K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, & R. Radulescu (Eds.), Proceedings of the 26th European Conference on Artificial Intelligence, ECAI ’23 (Vol. 372, pp. 303–310). doi: 10.3233/FAIA230284
  10. Knop, D., Koutecký, M., Levin, A., Mnich, M., & Onn, S. (2023). High-multiplicity N-fold IP via configuration LP. Mathematical Programming, 200, 199–227. doi: 10.1007/s10107-022-01882-9
  11. Jakl, T., Marsden, D., & Shah, N. (2023). A categorical account of composition methods in logic. Proceedings of the 38th Annual ACM/IEEE Symposium on Logic in Computer Science, LiCS ’23, 1–14. doi: 10.1109/LICS56636.2023.10175751
  12. Ganian, R., Hamm, T., Knop, D., Roy, S., Schierreich, Š., & Suchý, O. (2023). Maximizing Social Welfare in Score-Based Social Distance Games. In R. Verbrugge (Ed.), Proceedings of the 19th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’23 (Vol. 379, pp. 272–286). Open Publishing Association. doi: 10.4204/EPTCS.379.22
  13. Belmonte, R., Harutyunyan, A., Köhler, N., & Melissinos, N. (2023). Odd Chromatic Number of Graph Classes. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 44–58). Springer. doi: 10.1007/978-3-031-43380-1_4
  14. Červený, R., & Suchý, O. (2023). Generating faster algorithms for d-Path Vertex Cover. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 157–171). Springer. doi: 10.1007/978-3-031-43380-1_12
  15. Davot, T., Isenmann, L., Roy, S., & Thiebaut, J. (2023). Degreewidth: A New Parameter for Solving Problems on Tournaments. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 246–260). Springer. doi: 10.1007/978-3-031-43380-1_18
  16. Dvořák, P., Folwarczný, L., Opler, M., Pudlák, P., Šámal, R., & Vu, T. A. (2023). Bounds on Functionality and Symmetric Difference – Two Intriguing Graph Parameters. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 305–318). Springer. doi: 10.1007/978-3-031-43380-1_22
  17. Boehmer, N., Bredereck, R., Knop, D., & Luo, J. (2023). Fine-grained view on bribery for group identification. Autonomous Agents and Multi-Agent Systems, 37, 21. doi: 10.1007/s10458-023-09597-7
  18. Dvořák, M., Knop, D., & Schierreich, Š. (2023). Establishing Herd Immunity is Hard Even in Simple Geometric Networks. In M. Dewar, P. Pralat, P. Szufel, F. Théberge, & M. Wrzosek (Eds.), Proceedings of the 18th Workshop on Algorithms and Models for the Web Graph, WAW ’23 (Vol. 13894, pp. 68–82). Springer. doi: 10.1007/978-3-031-32296-9_5
  19. Choudhary, P., Goodrich, M. T., Gupta, S., Khodabandeh, H., Matias, P., & Raman, V. (2023). Improved kernels for tracking paths. Information Processing Letters, 181. doi: 10.1016/j.ipl.2023.106360
  20. Knop, D., & Schierreich, Š. (2023). Host Community Respecting Refugee Housing. In N. Agmon, B. An, A. Ricci, & W. Yeoh (Eds.), Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23 (pp. 966–975). International Foundation for Autonomous Agents and Multiagent Systems. https://dl.acm.org/doi/10.5555/3545946.3598736
  21. Kusek, B., Bredereck, R., Faliszewski, P., Kaczmarczyk, A., & Knop, D. (2023). Bribery Can Get Harder in Structured Multiwinner Approval Election. In N. Agmon, B. An, A. Ricci, & W. Yeoh (Eds.), Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23 (pp. 1725–1733). International Foundation for Autonomous Agents and Multiagent Systems. https://dl.acm.org/doi/10.5555/3545946.3598831
  22. Blažej, V., Choudhary, P., Knop, D., Křišťan, J. M., Suchý, O., & Valla, T. (2023). Constant Factor Approximation for Tracking Paths and Fault Tolerant Feedback Vertex Set. Discrete Optimization, 47, 100756. doi: 10.1016/j.disopt.2022.100756
  23. Blažej, V., Ganian, R., Knop, D., Pokorný, J., Schierreich, Š., & Simonov, K. (2023). The Parameterized Complexity of Network Microaggregation. In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23: Vol. 37, part 5 (pp. 6262–6270). AAAI Press. doi: 10.1609/aaai.v37i5.25771
  24. Schierreich, Š. (2023). Maximizing Influence Spread through a Dynamic Social Network (Student Abstract). In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23: Vol. 37, part 13 (pp. 16316–16317). AAAI Press. doi: 10.1609/aaai.v37i13.27018
  25. Blažej, V., Choudhary, P., Knop, D., Křišťan, J. M., Suchý, O., & Valla, T. (2023). Polynomial Kernels for Tracking Shortest Paths. Information Processing Letters, 179, 106315. doi: 10.1016/j.ipl.2022.106315
  26. Kučera, M., & Suchý, O. (2023). Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters. Algorithmica, 85(Special Issue on Combinatorial Algorithms (IWOCA 2021), 762–782. doi: 10.1007/s00453-022-01006-x

2022

  1. Choudhary, P., & Raman, V. (2022). Structural parameterizations of Tracking Paths problem. Theoretical Computer Science, 934(Special Issue on Italian Conference on Theoretical Computer Science). doi: 10.1016/j.tcs.2022.09.009
  2. Schierreich, Š., & Suchý, O. (2022). Waypoint routing on bounded treewidth graphs. Information Processing Letters, 173. doi: 10.1016/j.ipl.2021.106165
  3. Choudhary, P. (2022). Polynomial Time Algorithms for Tracking Path Problems. Algorithmica, 84(6), 1548–1570. doi: 10.1007/s00453-022-00931-1
  4. Blažej, V., Knop, D., & Schierreich, Š. (2022). Controlling the Spread of Two Secrets in Diverse Social Networks (Student Abstract). Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI ’22, 36, part 11, 12919–12920. doi: 10.1609/aaai.v36i11.21596
  5. Knop, D., Schierreich, Š., & Suchý, O. (2022). Balancing the Spread of Two Opinions in Sparse Social Networks (Student Abstract). Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI ’22, 36, part 11, 12987–12988. doi: 10.1609/aaai.v36i11.21630
  6. Ganian, R., Hamm, T., Knop, D., Schierreich, Š., & Suchý, O. (2022). Hedonic Diversity Games: A Complexity Picture with More than Two Colors. Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI ’22, 36, part 5, 5034–5042. doi: 10.1609/aaai.v36i5.20435
  7. Agrawal, A., Choudhary, P., Narayanaswamy, N. S., Nisha, K. K., & Ramamoorthi, V. (2022). Parameterized Complexity of Minimum Membership Dominating Set. In P. Mutzel, M. S. Rahman, & Slamin (Eds.), Proceedings of the 16th International Conference and Workshops on Algorithms and Computation, WALCOM ’22 (Vol. 13174, pp. 288–299). Springer. doi: 10.1007/978-3-030-96731-4_24
  8. Dvořák, P., Knop, D., & Toufar, T. (2022). Target Set Selection in Dense Graph Classes. SIAM Journal on Discrete Mathematics, 36(1), 536–572. doi: 10.1137/20M1337624
  9. Gavenčiak, T., Knop, D., & Koutecký, M. (2022). Integer Programming in Parameterized Complexity: Five Miniatures. Discrete Optimization, 44, 100596. doi: 10.1016/j.disopt.2020.100596
  10. Böhmer, N., Bredereck, R., Heeger, K., Knop, D., & Luo, J. (2022). Multivariate Algorithmics for Eliminating Envy by Donating Goods. Proceedings of the Twenty-First International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’22, 127–135. https://dl.acm.org/doi/abs/10.5555/3535850.3535866
  11. Bentert, M., Heeger, K., & Knop, D. (2022). Length-bounded cuts: Proper interval graphs and structural parameters. Journal of Computer and System Sciences, 126, 21–43. doi: 10.1016/j.jcss.2021.12.002
  12. Blažej, V., Choudhary, P., Knop, D., Schierreich, Š., Suchý, O., & Valla, T. (2022). On Polynomial Kernels for Traveling Salesperson Problem and its Generalizations. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), Proceedings of the 30th Annual European Symposium on Algorithms, ESA ’22 (Vol. 244, pp. 22:1–22:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ESA.2022.22
  13. Chen, J., & Roy, S. (2022). Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), Proceedings of the 30th Annual European Symposium on Algorithms, ESA ’22 (Vol. 244, pp. 36:1–36:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ESA.2022.36
  14. Knop, D., & Koutecký, M. (2022). Scheduling Kernels via Configuration LP. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), Proceedings of the 30th Annual European Symposium on Algorithms, ESA ’22 (Vol. 244, pp. 73:1–73:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ESA.2022.73
  15. Červený, R., Choudhary, P., & Suchý, O. (2022). On Kernels for d-Path Vertex Cover. In S. Szeider, R. Ganian, & A. Silva (Eds.), Proceedings of the 47th International Symposium on Mathematical Foundations of Computer Science, MFCS ’22 (Vol. 241, pp. 29:1–29:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2022.29
  16. Gupta, S., Jain, P., Lokshtanov, D., Roy, S., & Saurabh, S. (2022). Gehrlein Stable Committee with Multi-Modal Preferences. In A. V. Panagiotis Kanellopoulos Maria Kyropoulou (Ed.), Proceedings of the 15th International Symposium on Algorithmic Game Theory, SAGT ’22 (Vol. 13584, pp. 508–525). Springer. doi: 10.1007/978-3-031-15714-1_29
  17. Bredereck, R., Heeger, K., Knop, D., & Niedermeier, R. (2022). Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters. Information and Computation, 289, part A. doi: 10.1016/j.ic.2022.104943

2021

  1. Blažej, V., Choudhary, P., Knop, D., Křišťan, J. M., Suchý, O., & Valla, T. (2021). Constant Factor Approximation for Tracking Paths and Fault Tolerant Feedback Vertex Set. Proceedings of the 19th International Workshop on Approximation and Online Algorithms, WAOA ’21, 12982, 23–38. doi: 10.1007/978-3-030-92702-8_2
  2. Kučera, M., & Suchý, O. (2021). Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters. In P. Flocchini & L. Moura (Eds.), Proceedings of the 32nd International Workshop on Combinatorial Algorithms, IWOCA ’21 (Vol. 12757, pp. 442–455). Springer. doi: 10.1007/978-3-030-79987-8_31
  3. Dvořák, P., Eiben, E., Ganian, R., Knop, D., & Ordyniak, S. (2021). The complexity landscape of decompositional parameters for ILP: Programs with few global variables and constraints. Artificial Intelligence, 300, 103561. doi: 10.1016/j.artint.2021.103561
  4. Knop, D. (2021). Local linear set on graphs with bounded twin cover number. Information Processing Letters, 170, 106118. doi: 10.1016/j.ipl.2021.106118
  5. Dvořák, P., Feldmann, A. E., Knop, D., Masařík, T., Toufar, T., & Veselý, P. (2021). Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices. SIAM Journal on Discrete Mathematics, 35(1), 546–574. doi: 10.1137/18M1209489
  6. Chaplick, S., Fomin, F. V., Golovach, P. A., Knop, D., & Zeman, P. (2021). Kernelization of Graph Hamiltonicity: Proper H-Graphs. SIAM Journal on Discrete Mathematics, 35(2), 840–892. doi: 10.1137/19M1299001
  7. Klavík, P., Knop, D., & Zeman, P. (2021). Graph isomorphism restricted by lists. Theoretical Computer Science, 860, 51–71. doi: 10.1016/j.tcs.2021.01.027
  8. Bredereck, R., Figiel, A., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2021). High-Multiplicity Fair Allocation Made More Practical. In F. Dignum, A. Lomuscio, U. Endriss, & A. Nowé (Eds.), Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’21 (pp. 260–268). ACM. https://dl.acm.org/doi/10.5555/3463952.3463988
  9. Blažej, V., Opler, M., Sileikis, M., & Valtr, P. (2021). On the Intersections of Non-homotopic Loops. In A. Mudgal & C. R. Subramanian (Eds.), Proceedings of the 7th International Conference on Algorithms and Discrete Applied Mathematics, CALDAM ’21 (Vol. 12601, pp. 196–205). Springer. doi: 10.1007/978-3-030-67899-9_15
  10. Blažej, V., Dvořák, P., & Opler, M. (2021). Bears with Hats and Independence Polynomials. In Łukasz Kowalik, M. Pilipczuk, & P. Rzazewski (Eds.), Proceedings of the 47th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’21 (Vol. 12911, pp. 283–295). Springer. doi: 10.1007/978-3-030-86838-3_22
  11. Dvořák, P., Feldmann, A. E., Knop, D., Masařík, T., Toufar, T., & Veselý, P. (2021). Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices. SIAM Journal on Discrete Mathematics, 35(1), 546–574. doi: 10.1137/18M1209489

2020

  1. Knop, D. (2020). Partitioning graphs into induced subgraphs. Discrete Applied Mathematics, 272, 31–42. doi: 10.1016/j.dam.2019.01.010
  2. Knop, D., Koutecký, M., & Mnich, M. (2020). Combinatorial n-fold integer programming and applications. Mathematical Programming, 184(1), 1–34. doi: 10.1007/s10107-019-01402-2
  3. Bulteau, L., Hermelin, D., Knop, D., Labarre, A., & Vialette, S. (2020). The Clever Shopper Problem. Theory of Computing Systems, 64(1), 17–34. doi: 10.1007/s00224-019-09917-z
  4. Knop, D., Koutecký, M., & Mnich, M. (2020). Voting and Bribing in Single-Exponential Time. ACM Transactions on Economics and Computation, 8(3), 12:1–12:28. doi: 10.1145/3396855
  5. Knop, D., Pilipczuk, M., & Wrochna, M. (2020). Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. ACM Transactions on Computation Theory, 12(3), 19:1–19:19. doi: 10.1145/3397484
  6. Bredereck, R., Chen, J., Knop, D., Luo, J., & Niedermeier, R. (2020). Adapting Stable Matchings to Evolving Preferences. Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI ’20, 1830–1837. https://aaai.org/ojs/index.php/AAAI/article/view/5550
  7. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2020). Parameterized Algorithms for Finding a Collective Set of Items. Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI ’20, 1838–1845. https://aaai.org/ojs/index.php/AAAI/article/view/5551
  8. Boehmer, N., Bredereck, R., Knop, D., & Luo, J. (2020). Fine-Grained View on Bribery for Group Identification. In C. Bessiere (Ed.), Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI ’20 (pp. 67–73). ijcai.org. doi: 10.24963/ijcai.2020/10
  9. Bentert, M., Heeger, K., & Knop, D. (2020). Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters. In Y. Cao, S.-W. Cheng, & M. Li (Eds.), Proceedings of the 31st International Symposium on Algorithms and Computation, ISAAC ’20 (Vol. 181, pp. 36:1–36:14). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ISAAC.2020.36
  10. Chaplick, S., Golovach, P. A., Hartmann, T. A., & Knop, D. (2020). Recognizing Proper Tree-Graphs. In Y. Cao & M. Pilipczuk (Eds.), Proceedings of the 15th International Symposium on Parameterized and Exact Computation, IPEC ’20 (Vol. 180, pp. 8:1–8:15). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2020.8
  11. Hušek, R., Knop, D., & Masařík, T. (2020). Approximation Algorithms for Steiner Tree Based on Star Contractions: A Unified View. In Y. Cao & M. Pilipczuk (Eds.), Proceedings of the 15th International Symposium on Parameterized and Exact Computation, IPEC ’20 (Vol. 180, pp. 16:1–16:18). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2020.16
  12. Klavík, P., Knop, D., & Zeman, P. (2020). Graph Isomorphism Restricted by Lists. In I. Adler & H. Müller (Eds.), Proceedings of the 46th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’20 (Vol. 12301, pp. 106–118). Springer. doi: 10.1007/978-3-030-60440-0_9
  13. Bredereck, R., Heeger, K., Knop, D., & Niedermeier, R. (2020). Multidimensional Stable Roommates with Master List. In X. Chen, N. Gravin, M. Hoefer, & R. Mehta (Eds.), Proceedings of the 16th International Conference on Web and Internet Economics, WINE ’20 (Vol. 12495, pp. 59–73). Springer. doi: 10.1007/978-3-030-64946-3_5
  14. Blažej, V., Fiala, J., & Liotta, G. (2020). On the Edge-Length Ratio of 2-Trees. In D. Auber & P. Valtr (Eds.), Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization, GD ’20 (Vol. 12590, pp. 85–98). Springer. doi: 10.1007/978-3-030-68766-3_7

2019

  1. Blažej, V., Dvořák, P., & Valla, T. (2019). On Induced Online Ramsey Number of Paths, Cycles, and Trees. In R. van Bevern & G. Kucherov (Eds.), Proceedings of the 14th International Computer Science Symposium in Russia, CSR ’19 (Vol. 11532, pp. 60–69). Springer. doi: 10.1007/978-3-030-19955-5_6
  2. Blažej, V., Křišťan, J. M., & Valla, T. (2019). On the m-eternal Domination Number of Cactus Graphs. In E. Filiot, R. M. Jungers, & I. Potapov (Eds.), Proceedings of the 13th International Conference on Reachability Problems, RP ’19 (Vol. 11674, pp. 33–47). Springer. doi: 10.1007/978-3-030-30806-3_4
  3. Chitnis, R., Feldmann, A. E., & Suchý, O. (2019). A Tight Lower Bound for Planar Steiner Orientation. Algorithmica, 81(8), 3200–3216. doi: 10.1007/s00453-019-00580-x
  4. Malík, J., Suchý, O., & Valla, T. (2019). Efficient Implementation of Color Coding Algorithm for Subgraph Isomorphism Problem. In I. S. Kotsireas, P. M. Pardalos, K. E. Parsopoulos, D. Souravlias, & A. Tsokas (Eds.), Proceedings of the 1st Special Event on Analysis of Experimental Algorithms, SEA\(^2\) ’19 (Vol. 11544, pp. 283–299). Springer. doi: 10.1007/978-3-030-34029-2_19
  5. Altmanová, K., Knop, D., & Koutecký, M. (2019). Evaluating and Tuning n-fold Integer Programming. ACM Journal of Experimental Algorithmics, 24(1), 2.2:1–2.2:22. doi: 10.1145/3330137
  6. Knop, D., Koutecký, M., Masařík, T., & Toufar, T. (2019). Simplified Algorithmic Metatheorems Beyond MSO: Treewidth and Neighborhood Diversity. Logical Methods in Computer Science, 15(4). doi: 10.23638/LMCS-15(4:12)2019
  7. Eiben, E., Ganian, R., Knop, D., & Ordyniak, S. (2019). Solving Integer Quadratic Programming via Explicit and Structural Restrictions. Proceedings of the 33rd AAAI Conference on Artificial Intelligence, AAAI ’19, 1477–1484. doi: 10.1609/aaai.v33i01.33011477
  8. Bredereck, R., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2019). High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer Programming. In A. Karlin, N. Immorlica, & R. Johari (Eds.), Proceedings of the 2019 ACM Conference on Economics and Computation, EC ’19 (pp. 505–523). ACM. doi: 10.1145/3328526.3329649
  9. Eiben, E., Ganian, R., Knop, D., Ordyniak, S., Pilipczuk, M., & Wrochna, M. (2019). Integer Programming and Incidence Treedepth. In A. Lodi & V. Nagarajan (Eds.), Proceedings of the 20th International Conference Integer Programming and Combinatorial Optimization, IPCO ’19 (Vol. 11480, pp. 194–204). Springer. doi: 10.1007/978-3-030-17953-3_15
  10. Bredereck, R., Heeger, K., Knop, D., & Niedermeier, R. (2019). Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists Through the Lens of Graph Parameters. In P. Lu & G. Zhang (Eds.), Proceedings of the 30th International Symposium on Algorithms and Computation, ISAAC ’19 (Vol. 149, pp. 44:1–44:14). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ISAAC.2019.44
  11. Knop, D., Masařík, T., & Toufar, T. (2019). Parameterized Complexity of Fair Vertex Evaluation Problems. In P. Rossmanith, P. Heggernes, & J.-P. Katoen (Eds.), Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science, MFCS ’19 (Vol. 138, pp. 33:1–33:16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2019.33
  12. Červený, R., & Suchý, O. (2019). Faster FPT Algorithm for 5-Path Vertex Cover. In P. Rossmanith, P. Heggernes, & J.-P. Katoen (Eds.), Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science, MFCS ’19 (Vol. 138, pp. 32:1–32:13). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2019.32
  13. Eiben, E., Knop, D., Panolan, F., & Suchý, O. (2019). Complexity of the Steiner Network Problem with Respect to the Number of Terminals. In R. Niedermeier & C. Paul (Eds.), Proceedings of the 36th International Symposium on Theoretical Aspects of Computer Science, STACS ’19 (Vol. 126, pp. 25:1–25:17). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.STACS.2019.25
  14. Knop, D., Pilipczuk, M., & Wrochna, M. (2019). Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. In R. Niedermeier & C. Paul (Eds.), Proceedings of the 36th International Symposium on Theoretical Aspects of Computer Science, STACS ’19 (Vol. 126, pp. 44:1–44:15). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.STACS.2019.44
  15. Chaplick, S., Fomin, F. V., Golovach, P. A., Knop, D., & Zeman, P. (2019). Kernelization of Graph Hamiltonicity: Proper H-Graphs. In Z. Friggstad, J.-R. Sack, & M. R. Salavatipour (Eds.), Proceedings of the 16th International Symposium on Algorithms and Data Structures, WADS ’19 (Vol. 11646, pp. 296–310). Springer. doi: 10.1007/978-3-030-24766-9_22