List of publications

2024

  1. Fioravantes, F., Melissinos, N., & Triommatism, T. (2024). Parameterised distance to local irregularity. Proceedings of the 19th International Symposium on Parameterized and Exact Computation, IPEC ’24.
  2. Feuilloley, L., Janoušek, J., Křišťan, J. M., & Sedláček, J. E. (2024). Decreasing verification radius in local certification. Proceedings of the 20th International Symposium on Algorithmics of Wireless Networks, ALGOWIN ’24.
  3. Křišťan, J. M., & Sedláček, J. E. (2024). Brief Announcement: Decreasing verification radius in local certification. In D. Alistarh (Ed.), Proceedings of the 38th International Symposium on Distributed Computing, DISC ’24 (Vol. 319, pp. 49:1–49:6). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.DISC.2024.49
  4. Dvořák, M., Knop, D., & Schierreich, Š. (2024). On the Complexity of Target Set Selection in Simple Geometric Networks. Discrete Mathematics & Theoretical Computer Science, 26(2), 11:1–11:26. doi: 10.46298/dmtcs.11591
  5. Opler, M. (2024). An Optimal Algorithm for Sorting Pattern-Avoiding Sequences. Proceedings of the 65th IEEE Symposium on Foundations of Computer Science, FOCS ’24.
  6. Gahlawat, H., Křišťan, J. M., & Valla, T. (2024). Romeo and Juliet is EXPTIME-complete. In R. Královič & A. Kučera (Eds.), Proceedings of the 49th International Symposium on Mathematical Foundations of Computer Science, MFCS ’24 (Vol. 306, pp. 54:1–54:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2024.54
  7. Blažej, V., Knop, D., Pokorný, J., & Schierreich, Š. (2024). Equitable Connected Partition and Structural Parameters Revisited: N-fold Beats Lenstra. In R. Královič & A. Kučera (Eds.), Proceedings of the 49th International Symposium on Mathematical Foundations of Computer Science, MFCS ’24 (Vol. 306, pp. 29:1–29:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2024.29
  8. Schierreich, Š. (2024). Multivariate Analysis and Structural Restrictions in Computational Social Choice. In K. Larson (Ed.), Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24 (pp. 8502–8503). ijcai.org. doi: 10.24963/ijcai.2024/966
  9. Deligkas, A., Eiben, E., Knop, D., & Schierreich, Š. (2024). Individual Rationality in Topological Distance Games is Surprisingly Hard. In K. Larson (Ed.), Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24 (pp. 2782–2790). ijcai.org. doi: 10.24963/ijcai.2024/308
  10. Del Pia, A., Knop, D., Lassota, A., Sornat, K., & Talmon, N. (2024). Aggregation of Continuous Preferences in One Dimension. In K. Larson (Ed.), Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24 (pp. 2748–2756). ijcai.org. doi: 10.24963/ijcai.2024/304
  11. Boehmer, N., Faliszewski, P., Janeczko, Ł., Peters, D., Pierczyński, G., Schierreich, Š., Skowron, P., & Szufa, S. (2024). Evaluation of Project Performance in Participatory Budgeting. In K. Larson (Ed.), Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI ’24 (pp. 2678–2686). ijcai.org. doi: 10.24963/ijcai.2024/296
  12. Denat, T., Harutyunyan, A., Melissinos, N., & Paschos, V. T. (2024). Average-case complexity of a branch-and-bound algorithm for Min Dominating Set. Discrete Applied Mathematics, 345, 4–8. doi: 10.1016/j.dam.2023.11.021
  13. Jelínek, V., Opler, M., & Valtr, P. (2024). Generalized Coloring of Permutations. Algorithmica, 86, 2174–2210. doi: 10.1007/s00453-024-01220-9
  14. Červený, R., Choudhary, P., & Suchý, O. (2024). On Kernels for d-Path Vertex Cover. Journal of Computer and System Sciences, 144, 103531. doi: 10.1016/j.jcss.2024.103531
  15. Chen, J., Molter, H., Sorge, M., & Suchý, O. (2024). Cluster Editing for Multi-Layer and Temporal Graphs. Theory of Computing Systems, Commemorative Issue for Gerhard Woeginger, 68(5), 1239–1290. doi: 10.1007/s00224-024-10174-y
  16. Berendsohn, B. A., Kozma, L., & Opler, M. (2024). Optimization with Pattern-Avoiding Input. In B. Mohar, I. Shinkar, & R. O’Donnell (Eds.), Proceedings of the 56th Annual ACM Symposium on Theory of Computing, STOC ’24 (pp. 671–682). ACM. doi: 10.1145/3618260.3649631
  17. Schierreich, Š., & Smutný, J. G. (2024). The Parameterized Complexity of Maximum Betweenness Centrality. In X. Chen & B. Li (Eds.), Proceedings of the 18th Annual Conference on Theory and Applications of Models of Computation, TAMC ’24 (Vol. 14637, pp. 221–233). Springer. doi: 10.1007/978-981-97-2340-9_19
  18. Fioravantes, F., Knop, D., Křišťan, J. M., Melissinos, N., & Opler, M. (2024). Exact Algorithms and Lowerbounds for Multiagent Path Finding: Power of Treelike Topology. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence, AAAI ’24: Vol. 38, part 16 (pp. 17380–17388). AAAI Press. doi: 10.1609/aaai.v38i16.29686
  19. Deligkas, A., Eiben, E., Korchemna, V., & Schierreich, Š. (2024). The Complexity of Fair Division of Indivisible Items with Externalities. In M. Wooldridge, J. Dy, & S. Natarajan (Eds.), Proceedings of the 38th AAAI Conference on Artificial Intelligence, AAAI ’24: Vol. 38, part 9 (pp. 9653–9661). AAAI Press. doi: 10.1609/aaai.v38i9.28822
  20. Jelínek, V., Opler, M., & Pekárek, J. (2024). The Hierarchy of Hereditary Sorting Operators. In D. P. Woodruff (Ed.), Proceedings of the 35th ACM-SIAM Symposium on Discrete Algorithms, SODA ’24 (pp. 1447–1464). SIAM. doi: 10.1137/1.9781611977912.59

2023

  1. Hančl, J., Kabela, A., Opler, M., Sosnovec, J., Šámal, R., & Valtr, P. (2023). Improved Bounds for the Binary Paint Shop Problem. In W. Wu & G. Tong (Eds.), Proceedings of the 29th International Computing and Combinatorics Conference, COCOON ’23 (Vol. 14423, pp. 210–221). Springer. doi: 10.1007/978-3-031-49193-1_16
  2. Blažej, V., Dvořák, P., & Opler, M. (2023). Bears with Hats and Independence Polynomials. Discrete Mathematics & Theoretical Computer Science, 25(2). doi: 10.46298/dmtcs.10802
  3. Ganian, R., Hamm, T., Knop, D., Schierreich, Š., & Suchý, O. (2023). Hedonic Diversity Games: A Complexity Picture with More than Two Colors. Artificial Intelligence, 325, 1–20. doi: 10.1016/j.artint.2023.104017
  4. Bodlaender, H. L., Bonnet, É., Jaffke, L., Knop, D., Lima, P. T., Milanič, M., Ordyniak, S., Pandey, S., & Suchý, O. (2023). Treewidth is NP-Complete on Cubic Graphs. In N. Misra & M. Wahlström (Eds.), Proceedings of the 18th International Symposium on Parameterized and Exact Computation, IPEC ’23 (Vol. 285, pp. 7:1–7:13). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2023.7
  5. Gima, T., Kim, E. J., Köhler, N., Melissinos, N., & Vasilakis, M. (2023). Bandwidth Parameterized by Cluster Vertex Deletion Number. In N. Misra & M. Wahlström (Eds.), Proceedings of the 18th International Symposium on Parameterized and Exact Computation, IPEC ’23 (Vol. 285, pp. 21:1–21:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2023.21
  6. Dissaux, T., Fioravantes, F., Gahlawat, H., & Nisse, N. (2023). Recontamination helps a lot to hunt a rabbit. In J. Leroux, S. Lombardy, & D. Peleg (Eds.), Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science, MFCS ’23 (Vol. 272, pp. 42:1–42:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2023.42
  7. Lampis, M., Melissinos, N., & Vasilakis, M. (2023). Parameterized Max Min Feedback Vertex Set. In J. Leroux, S. Lombardy, & D. Peleg (Eds.), Proceedings of the 48th International Symposium on Mathematical Foundations of Computer Science, MFCS ’23 (Vol. 272, pp. 62:1–62:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2023.62
  8. Křišťan, J. M., & Svoboda, J. (2023). Shortest Dominating Set Reconfiguration under Token Sliding. In H. Fernau & K. Jansen (Eds.), Proceedings of the 24th International Symposium on Fundamentals of Computation Theory, FCT ’23 (Vol. 14292, pp. 333–347). Springer. doi: 10.1007/978-3-031-43587-4_24
  9. Bredereck, R., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2023). High-Multiplicity Fair Allocation Using Parametric Integer Linear Programming. In K. Gal, A. Nowé, G. J. Nalepa, R. Fairstein, & R. Radulescu (Eds.), Proceedings of the 26th European Conference on Artificial Intelligence, ECAI ’23 (Vol. 372, pp. 303–310). doi: 10.3233/FAIA230284
  10. Knop, D., Koutecký, M., Levin, A., Mnich, M., & Onn, S. (2023). High-multiplicity N-fold IP via configuration LP. Mathematical Programming, 200, 199–227. doi: 10.1007/s10107-022-01882-9
  11. Jakl, T., Marsden, D., & Shah, N. (2023). A categorical account of composition methods in logic. Proceedings of the 38th Annual ACM/IEEE Symposium on Logic in Computer Science, LiCS ’23, 1–14. doi: 10.1109/LICS56636.2023.10175751
  12. Ganian, R., Hamm, T., Knop, D., Roy, S., Schierreich, Š., & Suchý, O. (2023). Maximizing Social Welfare in Score-Based Social Distance Games. In R. Verbrugge (Ed.), Proceedings of the 19th Conference on Theoretical Aspects of Rationality and Knowledge, TARK ’23 (Vol. 379, pp. 272–286). Open Publishing Association. doi: 10.4204/EPTCS.379.22
  13. Belmonte, R., Harutyunyan, A., Köhler, N., & Melissinos, N. (2023). Odd Chromatic Number of Graph Classes. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 44–58). Springer. doi: 10.1007/978-3-031-43380-1_4
  14. Červený, R., & Suchý, O. (2023). Generating faster algorithms for d-Path Vertex Cover. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 157–171). Springer. doi: 10.1007/978-3-031-43380-1_12
  15. Davot, T., Isenmann, L., Roy, S., & Thiebaut, J. (2023). Degreewidth: A New Parameter for Solving Problems on Tournaments. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 246–260). Springer. doi: 10.1007/978-3-031-43380-1_18
  16. Dvořák, P., Folwarczný, L., Opler, M., Pudlák, P., Šámal, R., & Vu, T. A. (2023). Bounds on Functionality and Symmetric Difference – Two Intriguing Graph Parameters. In D. Paulusma & B. Ries (Eds.), Proceedings of the 49th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’23 (Vol. 14093, pp. 305–318). Springer. doi: 10.1007/978-3-031-43380-1_22
  17. Boehmer, N., Bredereck, R., Knop, D., & Luo, J. (2023). Fine-grained view on bribery for group identification. Autonomous Agents and Multi-Agent Systems, 37, 21. doi: 10.1007/s10458-023-09597-7
  18. Dvořák, M., Knop, D., & Schierreich, Š. (2023). Establishing Herd Immunity is Hard Even in Simple Geometric Networks. In M. Dewar, P. Pralat, P. Szufel, F. Théberge, & M. Wrzosek (Eds.), Proceedings of the 18th Workshop on Algorithms and Models for the Web Graph, WAW ’23 (Vol. 13894, pp. 68–82). Springer. doi: 10.1007/978-3-031-32296-9_5
  19. Choudhary, P., Goodrich, M. T., Gupta, S., Khodabandeh, H., Matias, P., & Raman, V. (2023). Improved kernels for tracking paths. Information Processing Letters, 181. doi: 10.1016/j.ipl.2023.106360
  20. Knop, D., & Schierreich, Š. (2023). Host Community Respecting Refugee Housing. In N. Agmon, B. An, A. Ricci, & W. Yeoh (Eds.), Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23 (pp. 966–975). International Foundation for Autonomous Agents and Multiagent Systems. https://dl.acm.org/doi/10.5555/3545946.3598736
  21. Kusek, B., Bredereck, R., Faliszewski, P., Kaczmarczyk, A., & Knop, D. (2023). Bribery Can Get Harder in Structured Multiwinner Approval Election. In N. Agmon, B. An, A. Ricci, & W. Yeoh (Eds.), Proceedings of the 22nd International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’23 (pp. 1725–1733). International Foundation for Autonomous Agents and Multiagent Systems. https://dl.acm.org/doi/10.5555/3545946.3598831
  22. Blažej, V., Choudhary, P., Knop, D., Křišťan, J. M., Suchý, O., & Valla, T. (2023). Constant Factor Approximation for Tracking Paths and Fault Tolerant Feedback Vertex Set. Discrete Optimization, 47, 100756. doi: 10.1016/j.disopt.2022.100756
  23. Blažej, V., Ganian, R., Knop, D., Pokorný, J., Schierreich, Š., & Simonov, K. (2023). The Parameterized Complexity of Network Microaggregation. In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23: Vol. 37, part 5 (pp. 6262–6270). AAAI Press. doi: 10.1609/aaai.v37i5.25771
  24. Schierreich, Š. (2023). Maximizing Influence Spread through a Dynamic Social Network (Student Abstract). In B. Williams, Y. Chen, & J. Neville (Eds.), Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI ’23: Vol. 37, part 13 (pp. 16316–16317). AAAI Press. doi: 10.1609/aaai.v37i13.27018
  25. Blažej, V., Choudhary, P., Knop, D., Křišťan, J. M., Suchý, O., & Valla, T. (2023). Polynomial Kernels for Tracking Shortest Paths. Information Processing Letters, 179, 106315. doi: 10.1016/j.ipl.2022.106315
  26. Kučera, M., & Suchý, O. (2023). Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters. Algorithmica, 85(Special Issue on Combinatorial Algorithms (IWOCA 2021), 762–782. doi: 10.1007/s00453-022-01006-x

2022

  1. Choudhary, P., & Raman, V. (2022). Structural parameterizations of Tracking Paths problem. Theoretical Computer Science, 934(Special Issue on Italian Conference on Theoretical Computer Science). doi: 10.1016/j.tcs.2022.09.009
  2. Schierreich, Š., & Suchý, O. (2022). Waypoint routing on bounded treewidth graphs. Information Processing Letters, 173. doi: 10.1016/j.ipl.2021.106165
  3. Choudhary, P. (2022). Polynomial Time Algorithms for Tracking Path Problems. Algorithmica, 84(6), 1548–1570. doi: 10.1007/s00453-022-00931-1
  4. Blažej, V., Knop, D., & Schierreich, Š. (2022). Controlling the Spread of Two Secrets in Diverse Social Networks (Student Abstract). Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI ’22, 36, part 11, 12919–12920. doi: 10.1609/aaai.v36i11.21596
  5. Knop, D., Schierreich, Š., & Suchý, O. (2022). Balancing the Spread of Two Opinions in Sparse Social Networks (Student Abstract). Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI ’22, 36, part 11, 12987–12988. doi: 10.1609/aaai.v36i11.21630
  6. Ganian, R., Hamm, T., Knop, D., Schierreich, Š., & Suchý, O. (2022). Hedonic Diversity Games: A Complexity Picture with More than Two Colors. Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI ’22, 36, part 5, 5034–5042. doi: 10.1609/aaai.v36i5.20435
  7. Agrawal, A., Choudhary, P., Narayanaswamy, N. S., Nisha, K. K., & Ramamoorthi, V. (2022). Parameterized Complexity of Minimum Membership Dominating Set. In P. Mutzel, M. S. Rahman, & Slamin (Eds.), Proceedings of the 16th International Conference and Workshops on Algorithms and Computation, WALCOM ’22 (Vol. 13174, pp. 288–299). Springer. doi: 10.1007/978-3-030-96731-4_24
  8. Dvořák, P., Knop, D., & Toufar, T. (2022). Target Set Selection in Dense Graph Classes. SIAM Journal on Discrete Mathematics, 36(1), 536–572. doi: 10.1137/20M1337624
  9. Gavenčiak, T., Knop, D., & Koutecký, M. (2022). Integer Programming in Parameterized Complexity: Five Miniatures. Discrete Optimization, 44, 100596. doi: 10.1016/j.disopt.2020.100596
  10. Böhmer, N., Bredereck, R., Heeger, K., Knop, D., & Luo, J. (2022). Multivariate Algorithmics for Eliminating Envy by Donating Goods. Proceedings of the Twenty-First International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’22, 127–135. https://dl.acm.org/doi/abs/10.5555/3535850.3535866
  11. Bentert, M., Heeger, K., & Knop, D. (2022). Length-bounded cuts: Proper interval graphs and structural parameters. Journal of Computer and System Sciences, 126, 21–43. doi: 10.1016/j.jcss.2021.12.002
  12. Blažej, V., Choudhary, P., Knop, D., Schierreich, Š., Suchý, O., & Valla, T. (2022). On Polynomial Kernels for Traveling Salesperson Problem and its Generalizations. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), Proceedings of the 30th Annual European Symposium on Algorithms, ESA ’22 (Vol. 244, pp. 22:1–22:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ESA.2022.22
  13. Chen, J., & Roy, S. (2022). Multi-Dimensional Stable Roommates in 2-Dimensional Euclidean Space. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), Proceedings of the 30th Annual European Symposium on Algorithms, ESA ’22 (Vol. 244, pp. 36:1–36:16). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ESA.2022.36
  14. Knop, D., & Koutecký, M. (2022). Scheduling Kernels via Configuration LP. In S. Chechik, G. Navarro, E. Rotenberg, & G. Herman (Eds.), Proceedings of the 30th Annual European Symposium on Algorithms, ESA ’22 (Vol. 244, pp. 73:1–73:15). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ESA.2022.73
  15. Červený, R., Choudhary, P., & Suchý, O. (2022). On Kernels for d-Path Vertex Cover. In S. Szeider, R. Ganian, & A. Silva (Eds.), Proceedings of the 47th International Symposium on Mathematical Foundations of Computer Science, MFCS ’22 (Vol. 241, pp. 29:1–29:14). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2022.29
  16. Gupta, S., Jain, P., Lokshtanov, D., Roy, S., & Saurabh, S. (2022). Gehrlein Stable Committee with Multi-Modal Preferences. In A. V. Panagiotis Kanellopoulos Maria Kyropoulou (Ed.), Proceedings of the 15th International Symposium on Algorithmic Game Theory, SAGT ’22 (Vol. 13584, pp. 508–525). Springer. doi: 10.1007/978-3-031-15714-1_29
  17. Bredereck, R., Heeger, K., Knop, D., & Niedermeier, R. (2022). Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters. Information and Computation, 289, part A. doi: 10.1016/j.ic.2022.104943

2021

  1. Blažej, V., Choudhary, P., Knop, D., Křišťan, J. M., Suchý, O., & Valla, T. (2021). Constant Factor Approximation for Tracking Paths and Fault Tolerant Feedback Vertex Set. Proceedings of the 19th International Workshop on Approximation and Online Algorithms, WAOA ’21, 12982, 23–38. doi: 10.1007/978-3-030-92702-8_2
  2. Kučera, M., & Suchý, O. (2021). Minimum Eccentricity Shortest Path Problem with Respect to Structural Parameters. In P. Flocchini & L. Moura (Eds.), Proceedings of the 32nd International Workshop on Combinatorial Algorithms, IWOCA ’21 (Vol. 12757, pp. 442–455). Springer. doi: 10.1007/978-3-030-79987-8_31
  3. Dvořák, P., Eiben, E., Ganian, R., Knop, D., & Ordyniak, S. (2021). The complexity landscape of decompositional parameters for ILP: Programs with few global variables and constraints. Artificial Intelligence, 300, 103561. doi: 10.1016/j.artint.2021.103561
  4. Knop, D. (2021). Local linear set on graphs with bounded twin cover number. Information Processing Letters, 170, 106118. doi: 10.1016/j.ipl.2021.106118
  5. Dvořák, P., Feldmann, A. E., Knop, D., Masařík, T., Toufar, T., & Veselý, P. (2021). Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices. SIAM Journal on Discrete Mathematics, 35(1), 546–574. doi: 10.1137/18M1209489
  6. Chaplick, S., Fomin, F. V., Golovach, P. A., Knop, D., & Zeman, P. (2021). Kernelization of Graph Hamiltonicity: Proper H-Graphs. SIAM Journal on Discrete Mathematics, 35(2), 840–892. doi: 10.1137/19M1299001
  7. Klavík, P., Knop, D., & Zeman, P. (2021). Graph isomorphism restricted by lists. Theoretical Computer Science, 860, 51–71. doi: 10.1016/j.tcs.2021.01.027
  8. Bredereck, R., Figiel, A., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2021). High-Multiplicity Fair Allocation Made More Practical. In F. Dignum, A. Lomuscio, U. Endriss, & A. Nowé (Eds.), Proceedings of the 20th International Conference on Autonomous Agents and Multiagent Systems, AAMAS ’21 (pp. 260–268). ACM. https://dl.acm.org/doi/10.5555/3463952.3463988
  9. Blažej, V., Opler, M., Sileikis, M., & Valtr, P. (2021). On the Intersections of Non-homotopic Loops. In A. Mudgal & C. R. Subramanian (Eds.), Proceedings of the 7th International Conference on Algorithms and Discrete Applied Mathematics, CALDAM ’21 (Vol. 12601, pp. 196–205). Springer. doi: 10.1007/978-3-030-67899-9_15
  10. Blažej, V., Dvořák, P., & Opler, M. (2021). Bears with Hats and Independence Polynomials. In Łukasz Kowalik, M. Pilipczuk, & P. Rzazewski (Eds.), Proceedings of the 47th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’21 (Vol. 12911, pp. 283–295). Springer. doi: 10.1007/978-3-030-86838-3_22
  11. Dvořák, P., Feldmann, A. E., Knop, D., Masařík, T., Toufar, T., & Veselý, P. (2021). Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices. SIAM Journal on Discrete Mathematics, 35(1), 546–574. doi: 10.1137/18M1209489

2020

  1. Knop, D. (2020). Partitioning graphs into induced subgraphs. Discrete Applied Mathematics, 272, 31–42. doi: 10.1016/j.dam.2019.01.010
  2. Knop, D., Koutecký, M., & Mnich, M. (2020). Combinatorial n-fold integer programming and applications. Mathematical Programming, 184(1), 1–34. doi: 10.1007/s10107-019-01402-2
  3. Bulteau, L., Hermelin, D., Knop, D., Labarre, A., & Vialette, S. (2020). The Clever Shopper Problem. Theory of Computing Systems, 64(1), 17–34. doi: 10.1007/s00224-019-09917-z
  4. Knop, D., Koutecký, M., & Mnich, M. (2020). Voting and Bribing in Single-Exponential Time. ACM Transactions on Economics and Computation, 8(3), 12:1–12:28. doi: 10.1145/3396855
  5. Knop, D., Pilipczuk, M., & Wrochna, M. (2020). Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. ACM Transactions on Computation Theory, 12(3), 19:1–19:19. doi: 10.1145/3397484
  6. Bredereck, R., Chen, J., Knop, D., Luo, J., & Niedermeier, R. (2020). Adapting Stable Matchings to Evolving Preferences. Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI ’20, 1830–1837. https://aaai.org/ojs/index.php/AAAI/article/view/5550
  7. Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2020). Parameterized Algorithms for Finding a Collective Set of Items. Proceedings of the 34th AAAI Conference on Artificial Intelligence, AAAI ’20, 1838–1845. https://aaai.org/ojs/index.php/AAAI/article/view/5551
  8. Boehmer, N., Bredereck, R., Knop, D., & Luo, J. (2020). Fine-Grained View on Bribery for Group Identification. In C. Bessiere (Ed.), Proceedings of the 29th International Joint Conference on Artificial Intelligence, IJCAI ’20 (pp. 67–73). ijcai.org. doi: 10.24963/ijcai.2020/10
  9. Bentert, M., Heeger, K., & Knop, D. (2020). Length-Bounded Cuts: Proper Interval Graphs and Structural Parameters. In Y. Cao, S.-W. Cheng, & M. Li (Eds.), Proceedings of the 31st International Symposium on Algorithms and Computation, ISAAC ’20 (Vol. 181, pp. 36:1–36:14). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ISAAC.2020.36
  10. Chaplick, S., Golovach, P. A., Hartmann, T. A., & Knop, D. (2020). Recognizing Proper Tree-Graphs. In Y. Cao & M. Pilipczuk (Eds.), Proceedings of the 15th International Symposium on Parameterized and Exact Computation, IPEC ’20 (Vol. 180, pp. 8:1–8:15). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2020.8
  11. Hušek, R., Knop, D., & Masařík, T. (2020). Approximation Algorithms for Steiner Tree Based on Star Contractions: A Unified View. In Y. Cao & M. Pilipczuk (Eds.), Proceedings of the 15th International Symposium on Parameterized and Exact Computation, IPEC ’20 (Vol. 180, pp. 16:1–16:18). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.IPEC.2020.16
  12. Klavík, P., Knop, D., & Zeman, P. (2020). Graph Isomorphism Restricted by Lists. In I. Adler & H. Müller (Eds.), Proceedings of the 46th International Workshop on Graph-Theoretic Concepts in Computer Science, WG ’20 (Vol. 12301, pp. 106–118). Springer. doi: 10.1007/978-3-030-60440-0_9
  13. Bredereck, R., Heeger, K., Knop, D., & Niedermeier, R. (2020). Multidimensional Stable Roommates with Master List. In X. Chen, N. Gravin, M. Hoefer, & R. Mehta (Eds.), Proceedings of the 16th International Conference on Web and Internet Economics, WINE ’20 (Vol. 12495, pp. 59–73). Springer. doi: 10.1007/978-3-030-64946-3_5
  14. Blažej, V., Fiala, J., & Liotta, G. (2020). On the Edge-Length Ratio of 2-Trees. In D. Auber & P. Valtr (Eds.), Proceedings of the 28th International Symposium on Graph Drawing and Network Visualization, GD ’20 (Vol. 12590, pp. 85–98). Springer. doi: 10.1007/978-3-030-68766-3_7

2019

  1. Blažej, V., Dvořák, P., & Valla, T. (2019). On Induced Online Ramsey Number of Paths, Cycles, and Trees. In R. van Bevern & G. Kucherov (Eds.), Proceedings of the 14th International Computer Science Symposium in Russia, CSR ’19 (Vol. 11532, pp. 60–69). Springer. doi: 10.1007/978-3-030-19955-5_6
  2. Blažej, V., Křišťan, J. M., & Valla, T. (2019). On the m-eternal Domination Number of Cactus Graphs. In E. Filiot, R. M. Jungers, & I. Potapov (Eds.), Proceedings of the 13th International Conference on Reachability Problems, RP ’19 (Vol. 11674, pp. 33–47). Springer. doi: 10.1007/978-3-030-30806-3_4
  3. Chitnis, R., Feldmann, A. E., & Suchý, O. (2019). A Tight Lower Bound for Planar Steiner Orientation. Algorithmica, 81(8), 3200–3216. doi: 10.1007/s00453-019-00580-x
  4. Malík, J., Suchý, O., & Valla, T. (2019). Efficient Implementation of Color Coding Algorithm for Subgraph Isomorphism Problem. In I. S. Kotsireas, P. M. Pardalos, K. E. Parsopoulos, D. Souravlias, & A. Tsokas (Eds.), Proceedings of the 1st Special Event on Analysis of Experimental Algorithms, SEA\(^2\) ’19 (Vol. 11544, pp. 283–299). Springer. doi: 10.1007/978-3-030-34029-2_19
  5. Altmanová, K., Knop, D., & Koutecký, M. (2019). Evaluating and Tuning n-fold Integer Programming. ACM Journal of Experimental Algorithmics, 24(1), 2.2:1–2.2:22. doi: 10.1145/3330137
  6. Knop, D., Koutecký, M., Masařík, T., & Toufar, T. (2019). Simplified Algorithmic Metatheorems Beyond MSO: Treewidth and Neighborhood Diversity. Logical Methods in Computer Science, 15(4). doi: 10.23638/LMCS-15(4:12)2019
  7. Eiben, E., Ganian, R., Knop, D., & Ordyniak, S. (2019). Solving Integer Quadratic Programming via Explicit and Structural Restrictions. Proceedings of the 33rd AAAI Conference on Artificial Intelligence, AAAI ’19, 1477–1484. doi: 10.1609/aaai.v33i01.33011477
  8. Bredereck, R., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2019). High-Multiplicity Fair Allocation: Lenstra Empowered by N-fold Integer Programming. In A. Karlin, N. Immorlica, & R. Johari (Eds.), Proceedings of the 2019 ACM Conference on Economics and Computation, EC ’19 (pp. 505–523). ACM. doi: 10.1145/3328526.3329649
  9. Eiben, E., Ganian, R., Knop, D., Ordyniak, S., Pilipczuk, M., & Wrochna, M. (2019). Integer Programming and Incidence Treedepth. In A. Lodi & V. Nagarajan (Eds.), Proceedings of the 20th International Conference Integer Programming and Combinatorial Optimization, IPCO ’19 (Vol. 11480, pp. 194–204). Springer. doi: 10.1007/978-3-030-17953-3_15
  10. Bredereck, R., Heeger, K., Knop, D., & Niedermeier, R. (2019). Parameterized Complexity of Stable Roommates with Ties and Incomplete Lists Through the Lens of Graph Parameters. In P. Lu & G. Zhang (Eds.), Proceedings of the 30th International Symposium on Algorithms and Computation, ISAAC ’19 (Vol. 149, pp. 44:1–44:14). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.ISAAC.2019.44
  11. Knop, D., Masařík, T., & Toufar, T. (2019). Parameterized Complexity of Fair Vertex Evaluation Problems. In P. Rossmanith, P. Heggernes, & J.-P. Katoen (Eds.), Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science, MFCS ’19 (Vol. 138, pp. 33:1–33:16). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2019.33
  12. Červený, R., & Suchý, O. (2019). Faster FPT Algorithm for 5-Path Vertex Cover. In P. Rossmanith, P. Heggernes, & J.-P. Katoen (Eds.), Proceedings of the 44th International Symposium on Mathematical Foundations of Computer Science, MFCS ’19 (Vol. 138, pp. 32:1–32:13). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.MFCS.2019.32
  13. Eiben, E., Knop, D., Panolan, F., & Suchý, O. (2019). Complexity of the Steiner Network Problem with Respect to the Number of Terminals. In R. Niedermeier & C. Paul (Eds.), Proceedings of the 36th International Symposium on Theoretical Aspects of Computer Science, STACS ’19 (Vol. 126, pp. 25:1–25:17). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.STACS.2019.25
  14. Knop, D., Pilipczuk, M., & Wrochna, M. (2019). Tight Complexity Lower Bounds for Integer Linear Programming with Few Constraints. In R. Niedermeier & C. Paul (Eds.), Proceedings of the 36th International Symposium on Theoretical Aspects of Computer Science, STACS ’19 (Vol. 126, pp. 44:1–44:15). Schloss Dagstuhl - Leibniz-Zentrum für Informatik. doi: 10.4230/LIPIcs.STACS.2019.44
  15. Chaplick, S., Fomin, F. V., Golovach, P. A., Knop, D., & Zeman, P. (2019). Kernelization of Graph Hamiltonicity: Proper H-Graphs. In Z. Friggstad, J.-R. Sack, & M. R. Salavatipour (Eds.), Proceedings of the 16th International Symposium on Algorithms and Data Structures, WADS ’19 (Vol. 11646, pp. 296–310). Springer. doi: 10.1007/978-3-030-24766-9_22